Locomotive Gear Fault Diagnosis Based on Wavelet Bispectrum of Motor Current
Author(s) -
Mingming Zhang,
Jiangtian Yang,
Zhang Zhang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5554777
Subject(s) - bispectrum , wavelet , fault (geology) , engineering , electronic engineering , pattern recognition (psychology) , computer science , control theory (sociology) , spectral density , artificial intelligence , telecommunications , control (management) , seismology , geology
The motor current signature analysis (MCSA) provides a nondestructive method for gear fault detection. The motor current in the faulty gear system not only involves the frequency information related to the fault but also the electric supply frequency and gear meshing-related frequency, which not only contaminates the fault characteristics but also increases the difficulty of fault extraction. To extract the fault characteristic frequency effectively, an innovative method based on the wavelet bispectrum (WB) is proposed. Bispectrum is an effective tool for identifying the fault-related quadratic phase coupling (QPC). However, it requires a large amount of data averaging, which is not suitable for short data analysis. In this paper, the wavelet bispectrum is introduced to motor current analysis and the problem of QPC extraction under variable speed conditions is preliminarily solved. Furthermore, a fault diagnostic approach for locomotive gears using the wavelet bispectrum and wavelet bispectral entropy is suggested. The presented method was effectively applied to the locomotive online running operations, and faults of the drive gear were successfully diagnosed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom