z-logo
open-access-imgOpen Access
Coverless Steganography Based on Motion Analysis of Video
Author(s) -
Yun Tan,
Jiaohua Qin,
Xuyu Xiang,
Chunhu Zhang,
Zhangdong Wang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5554058
Subject(s) - computer science , steganography , histogram , robustness (evolution) , hash function , steganalysis , information hiding , cryptographic hash function , data compression , bitstream , computer vision , artificial intelligence , steganography tools , embedding , decoding methods , algorithm , computer security , image (mathematics) , biochemistry , chemistry , gene
With the rapid development of interactive multimedia services and camera sensor networks, the number of network videos is exploding, which has formed a natural carrier library for steganography. In this study, a coverless steganography scheme based on motion analysis of video is proposed. For every video in the database, the robust histograms of oriented optical flow (RHOOF) are obtained, and the index database is constructed. +e hidden information bits are mapped to the hash sequences of RHOOF, and the corresponding indexes are sent by the sender. At the receiver, through calculating hash sequences of RHOOF from the cover video, the secret information can be extracted successfully. During the whole process, the cover video remains original without any modification and has a strong ability to resist steganalysis. +e capacity is investigated and shows good improvement. +e robustness performance is prominent against most attacks such as pepper and salt noise, speckle noise, MPEG-4 compression, and motion JPEG 2000 compression. Compared with the existing coverless information hiding schemes based on images, the proposed method not only obtains a good trade-off between hiding information capacity and robustness but also can achieve higher hiding success rate and lower transmission data load, which shows good practicability and feasibility.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom