Mechanical and Thermal Properties of RCB Masonry Containing Three Rows of Holes
Author(s) -
Hanquan Yuan,
Lihua Zhu,
Yixuan Wang,
Fengjian Zhang
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/5553406
Subject(s) - masonry , materials science , structural engineering , compressive strength , block (permutation group theory) , thermal , composite material , property (philosophy) , geotechnical engineering , geology , engineering , geometry , philosophy , mathematics , physics , epistemology , meteorology
In order to promote and apply the structures of the recycled concrete block (RCB) masonry, the thermal and mechanical properties of the recycled concrete specimens were tested in this study. The RCB can meet load-bearing and seismic requirements and was prepared through experiments. Concurrently, the mechanical property experiment was conducted on the RCB masonry, and then its failure process and mode were discussed. In addition, a thermal property test was completed on the RCB wall, and the difference in the thermal properties of single-row hole, three-row hole, and solid blocks was analyzed by theoretical calculations. The results indicated that the mechanical properties of the RCB masonry were basically the same as those of the natural concrete block masonry, and they have good compressive stability. The calculation formulas of the compressive and shear strengths of the natural concrete block masonry are applicable to the RCB masonry. The RCB masonry containing three rows of holes owns more outstanding thermal property than natural concrete block masonry and satisfies the requirements for related codes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom