z-logo
open-access-imgOpen Access
Influence of Structural Parameters of Shape Memory Alloy Corrugated Gaskets on the Contact Pressure of Bolted Flange Joints
Author(s) -
Liang He,
Xiaofeng Lu,
Xiaolei Zhu,
Qing Chen
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/5552569
Subject(s) - gasket , materials science , flange , shape memory alloy , finite element method , composite material , sma* , deformation (meteorology) , coupling (piping) , compressive strength , structural engineering , mathematics , combinatorics , engineering
Shape memory alloy corrugated gaskets (SMA-CGs) can adapt to fluctuating working conditions due to their pseudoelasticity (PE) and shape memory effect (SME), which make them excellent sealing components. In this study, the deformation mechanism of SMA-CGs was examined according to their structural properties under installation and operating conditions to establish an SMA-CG thermal-mechanical coupling model with the finite element analysis (FEA) method, which has been verified through experimentation. Based on this, a thermal-mechanical coupling FEA model was built for a bolted flange joint with SMA-CG. The influence of the SMA-CG structure parameters on compression-rebound mechanical properties was also studied under installation and operating conditions. The conclusions are as follows: a thermal-mechanical coupling finite element analysis method was established for NiTi alloy corrugated structures. Through comparison with the experimental results, the maximum error of the maximum compression load was 5.78%, the maximum error of the rebound rate was 8.85%, and the maximum error of the maximum compaction force in the heat recovery stage was 12.2%, all of which were within the  H > P, and when structural parameters of SMA-CG were T = 0.6 mm, H = 4 mm, and P = 2.5 mm, the contact pressure of corrugated gasket was the highest under operating conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom