z-logo
open-access-imgOpen Access
The Underlying Molecular Mechanisms Involved in Traditional Chinese Medicine Smilax china L. for the Treatment of Pelvic Inflammatory Disease
Author(s) -
Yunsen Zhang,
Zikuang Zhao,
Huimin Chen,
Yutong Fu,
Wenxiang Wang,
Qi Li,
Xuanhao Li,
Xiaobo Wang,
Gang Fan,
Yi Zhang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/5552532
Subject(s) - rutin , traditional chinese medicine , traditional medicine , pharmacology , tumor necrosis factor alpha , chemistry , ctgf , medicine , antioxidant , biochemistry , receptor , growth factor , pathology , alternative medicine
Smilax china L. (SCL) is extensively used in the treatment of pelvic inflammatory disease (PID). This study aimed to clarify the potential active ingredients of SCL and mechanisms on PID. SCL was widely distributed in Japan, South Korea, and China, which was traditionally considered heat-clearing, detoxicating, and dampness-eliminating medicine. Systems pharmacology revealed that 32 compounds in SCL may interact with 19 targets for immunoenhancement, antiapoptosis, anti-inflammation, and antioxidant activity of the PID model. Molecular docking revealed that isorhamnetin, moracin M, rutin, and oxyresveratrol may have higher binding potential with prostaglandin-endoperoxide synthase 2 (PTGS2), mitogen-activated protein kinase 1 (MAPK1), siderocalin (LCN2), tumor necrosis factor (TNF), and matrix metalloprotein-9 (MMP9), respectively. Molecular dynamics simulation showed that the binding modes of moracin M-MAPK1, rutin-TNF, and oxyresveratrol-MMP9 complexes were more stable, evidenced by relatively smaller fluctuations in root mean square deviation values. Conclusively, SCL may treat PID by inhibiting inflammatory factors, antitissue fibrosis, and microbial growth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom