z-logo
open-access-imgOpen Access
Optimal Allocation Model of Virtual Power Plant Capacity considering Electric Vehicles
Author(s) -
Shiping Geng,
Caixia Tan,
Dongxiao Niu,
Xiaopeng Guo
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5552323
Subject(s) - virtual power plant , cvar , maximization , mathematical optimization , monte carlo method , engineering , computer science , automotive engineering , expected shortfall , distributed generation , renewable energy , electrical engineering , economics , risk management , statistics , mathematics , management
To push forward the development of electric vehicles while improving the economy and environment of virtual power plants (VPPs), research on the optimization of VPP capacity considering electric vehicles is carried out. In this paper, based on this, this paper first analyzes the framework of the VPP with electric vehicles and models each unit of the VPP. Secondly, the typical scenarios of wind power, photovoltaic, electric vehicle charging and discharging, and load are formed by the Monte Carlo method to reduce the output deviation of each unit. Then, taking the maximization of the net income and clean energy consumption of the VPP as the objective function, the capacity optimal allocation model of the VPP considering multiobjective is constructed, and the conditional value-at-risk (CVaR) is introduced to represent the investment uncertainty faced by the VPP. Finally, a VPP in a certain area of Shanxi Province is used to analyze a calculation example and solve it with CPLEX. The results of the calculation example show that, on the one hand, reasonable selection of the optimal scale of EV connected to the VPP is able to improve the economy and environment of the VPP. On the other hand, the introduction of CVaR is available for the improvement of the scientific nature of VPP capacity allocation decisions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom