z-logo
open-access-imgOpen Access
A Note on Cube-Full Numbers in Arithmetic Progression
Author(s) -
Mingxuan Zhong,
Yuankui Ma
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5552120
Subject(s) - mathematics , arithmetic , arithmetic progression , hyperbola , combinatorics , discrete mathematics , geometry
We obtain an asymptotic formula for the cube-full numbers in an arithmetic progression n ≡ l mod   q , where q , l = 1 . By extending the construction derived from Dirichlet’s hyperbola method and relying on Kloosterman-type exponential sum method, we improve the very recent error term with x 118 / 4029 < q .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom