A Note on Cube-Full Numbers in Arithmetic Progression
Author(s) -
Mingxuan Zhong,
Yuankui Ma
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5552120
Subject(s) - mathematics , arithmetic , arithmetic progression , hyperbola , combinatorics , discrete mathematics , geometry
We obtain an asymptotic formula for the cube-full numbers in an arithmetic progression n ≡ l mod q , where q , l = 1 . By extending the construction derived from Dirichlet’s hyperbola method and relying on Kloosterman-type exponential sum method, we improve the very recent error term with x 118 / 4029 < q .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom