Empowered Hybrid Parent Selection for Improving Network Lifetime, PDR, and Latency in Smart Grid
Author(s) -
Kanabadee Srisomboon,
Tinnaphob Dindam,
Wilaiporn Lee
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5551152
Subject(s) - computer science , latency (audio) , computer network , network packet , transmission (telecommunications) , data transmission , real time computing , telecommunications
To support the constraints of smart meters—low power and memory—of AMI network, RPL is considered as the most suitable routing protocol to be implemented in practice. Network lifetime, PDR, and latency are the critical issues to be focused on and addressed. Generally, single parent selection scheme cannot satisfy all expected performance requirements of RPL based on AMI network due to tradeoff between workload balancing and transmission performance, PDR and latency. Moreover, the single parent also suffers from the package size and transmission range. Then, multiparent solution is proposed to overcome these demerits using multipath transmission strategy. Although the existing multiparent solutions, MELT and MAHP, overcome the issue of transmission performance, they present low network lifetime since multiparent solution consumes high energy in data transmission. In this paper, we propose an “empowered hybrid parent selection (EHPS)” that exploits the merits of multiparent solution and the single parent with cognitive radio technology in a hybridizing scheme. To split the data packet efficiently under multipath transmission strategy, a fuzzy AHP (FAHP) is adopted; therefore, EHPS balances the workload effectively and maximizes the network lifetime over long transmission range and large data size. Moreover, by exploiting cognitive radio, EHPS is flexible to the transmission range and data size since it achieves the highest transmission performance, highest PDR, and lowest latency among others, while maintaining high network lifetime.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom