Rewiring Strategy Based on Directed Betweenness to Mitigate Disruptions of Large-Scale Supply Chain Networks
Author(s) -
Hui Xia
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5550837
Subject(s) - betweenness centrality , robustness (evolution) , supply chain , supply chain network , computer science , complex network , scale free network , supply chain management , supply network , distributed computing , business , mathematics , centrality , marketing , quantum mechanics , biochemistry , chemistry , power (physics) , physics , combinatorics , world wide web , gene
In current large-scale supply chain networks, unexpected disruptions degrade the supply availability and network connectivity for modern enterprises. How to improve the robustness of supply chain networks is very important for modern enterprises. In this paper, we explore how to improve the robustness of supply chain networks from a topological perspective. Firstly, through the empirical data-driven study, we show that the directed betweenness metric is more suitable than the other topological metrics in evaluating the robustness of supply chain networks. Then, we propose a rewiring algorithm based on directed betweenness to improve network robustness under the impact of disruptions. The experimental results in the large-scale supply chain network show that the rewiring algorithm based on directed betweenness effectively improves the network robustness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom