z-logo
open-access-imgOpen Access
On the Training Algorithms for Artificial Neural Network in Predicting the Shear Strength of Deep Beams
Author(s) -
ThuyAnh Nguyen,
Haï-Bang Ly,
HaiVan Thi,
Van Quan Tran
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5548988
Subject(s) - mean squared error , mean absolute percentage error , artificial neural network , gradient descent , correlation coefficient , algorithm , conjugate gradient method , computer science , coefficient of determination , approximation error , pearson product moment correlation coefficient , mathematics , artificial intelligence , machine learning , statistics
This study aims to predict the shear strength of reinforced concrete (RC) deep beams based on artificial neural network (ANN) using four training algorithms, namely, Levenberg–Marquardt (ANN-LM), quasi-Newton method (ANN-QN), conjugate gradient (ANN-CG), and gradient descent (ANN-GD). A database containing 106 results of RC deep beam shear strength tests is collected and used to investigate the performance of the four proposed algorithms. The ANN training phase uses 70% of data, randomly taken from the collected dataset, whereas the remaining 30% of data are used for the algorithms’ evaluation process. The ANN structure consists of an input layer with 9 neurons corresponding to 9 input parameters, a hidden layer of 10 neurons, and an output layer with 1 neuron representing the shear strength of RC deep beams. The performance evaluation of the models is performed using statistical criteria, including the correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The results show that the ANN-CG model has the best prediction performance with R = 0.992, RMSE = 14.02, MAE = 14.24, and MAPE = 6.84. The results of this study show that the ANN-CG model can accurately predict the shear strength of RC deep beams, representing a promising and useful alternative design solution for structural engineers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom