Application of Multitask Joint Sparse Representation Algorithm in Chinese Painting Image Classification
Author(s) -
Dongyu Yang,
Xinchen Ye,
Baolong Guo
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5546338
Subject(s) - grayscale , computer science , artificial intelligence , pattern recognition (psychology) , robustness (evolution) , discriminative model , feature extraction , sparse approximation , co occurrence matrix , algorithm , image (mathematics) , computer vision , image texture , image processing , biochemistry , chemistry , gene
This paper presents an in-depth study and analysis of Chinese painting image classification by a multitask joint sparse representation algorithm for texture feature extraction of Chinese painting images and proposes a method to extract texture features directly for the original images. It simplifies the process of image grayscale conversion and preserves the information contained in the original Chinese painting images to the greatest extent. The algorithm uses the ideas of multicolor domain analysis and multiscale analysis, combined with the traditional grayscale coeval matrix to extract texture features. Experiments show that the multiscale grayscale cooccurrence matrix algorithm outperforms the traditional grayscale cooccurrence matrix algorithm and the color grayscale cooccurrence matrix algorithm. The discriminative ability of multiple features for target recognition is integrated by multitask learning, thus improving the robustness and generalization ability of the algorithm; meanwhile, the recognition accuracy is improved by using a two-level multitask learning mode to exclude the interference of a large number of irrelevant dictionary atoms. The experimental results show that the algorithm has higher recognition accuracy and better robustness than the existing sparse representation SAR target recognition algorithm. Configuration recognition experiments are conducted on different configurations of target data, and the experimental results show that the algorithm achieves better configuration recognition accuracy than existing algorithms.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom