z-logo
open-access-imgOpen Access
A Novel LT Scheme without Feedback Messages for IoT of Smart City Scenarios
Author(s) -
Shuang Wu,
Qingyang Guan,
Shanshan Li
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5546154
Subject(s) - computer science , overhead (engineering) , decoding methods , transmission (telecommunications) , coding (social sciences) , encoder , computer network , encoding (memory) , data transmission , real time computing , telecommunications , statistics , mathematics , artificial intelligence , operating system
For IoTs of smart city scenarios always with the low cost, low power consumption, and high transmission delay properties, the traditional protocols based on feedback messages, e.g., the Automatic Repeat reQuest (ARQ) schemes, would dramatically affect the transmission efficiency. Therefore, the LT codes with only one feedback message in each entire coding process can be used to substitute the traditional protocols. As in many IoTs of smart city scenarios, the data must have both high transmission efficiency and timeliness requirements; thus, the negative effect of only the feedback message in each entire coding process cannot be neglected in such transmission environments. To enhance the transmission efficiency of such ensembles, a novel LT scheme without feedback messages is proposed in this paper. By presenting the definitions of optimal decoding overhead and recovery ratio per symbol, the optimal decoding overhead of LT codes can be found directly, then the encoding overhead of the encoder can be predesigned also. For this reason, the feedback messages in LT schemes can be removed. By using the proposed LT scheme, the transmission efficiency of IoT of smart city scenarios can be enhanced.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom