z-logo
open-access-imgOpen Access
Implementation of a Transform-Minutiae Fusion-Based Model for Fingerprint Recognition
Author(s) -
Justice Kwame Appati,
Prince Kofi Nartey,
Ebenezer Owusu,
Ismail Wafaa Denwar
Publication year - 2021
Publication title -
international journal of mathematics and mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.21
H-Index - 39
eISSN - 1687-0425
pISSN - 0161-1712
DOI - 10.1155/2021/5545488
Subject(s) - minutiae , biometrics , artificial intelligence , pattern recognition (psychology) , computer science , identification (biology) , fingerprint (computing) , wavelet transform , fingerprint recognition , smoothing , computer vision , wavelet , botany , biology
Biometrics consists of scientific methods of using a person’s unique physiological or behavioral traits for electronic identification and verification. The traits for biometric identification are fingerprint, voice, face, and palm print recognition. However, this study considers fingerprint recognition for in-person identification since they are distinctive, reliable, and relatively easy to acquire. Despite the many works done, the problem of accuracy still persists which perhaps can be attributed to the varying characteristic of the acquisition devices. This study seeks to improve the issue recognition accuracy with the proposal of the fusion of a two transform and minutiae models. In this study, a transform-minutiae fusion-based model for fingerprint recognition is proposed. The first transform technique, thus wave atom transform, was used for data smoothing while the second transform, thus wavelet, was used for feature extraction. These features were added to the minutiae features for person recognition. Evaluating the proposed design on the FVC 2002 dataset showed a relatively better performance compared to existing methods with an accuracy measure of 100% as to 96.67% and 98.55% of the existing methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom