z-logo
open-access-imgOpen Access
Bounds on Co-Independent Liar’s Domination in Graphs
Author(s) -
K. Suriya Prabha,
S. Amutha,
N. Anbazhagan,
İsmail Naci Cangül
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5544559
Subject(s) - combinatorics , mathematics
A set S ⊆ V of a graph G = V , E is called a co-independent liar’s dominating set of G if (i) for all v ∈ V , N G v ∩ S ≥ 2 , (ii) for every pair u , v ∈ V of distinct vertices, N G u ∪ N G v ∩ S ≥ 3 , and (iii) the induced subgraph of G on V − S has no edge. The minimum cardinality of vertices in such a set is called the co-independent liar’s domination number of G , and it is denoted by γ coi L R G . In this paper, we introduce the concept of co-independent liar’s domination number of the middle graph of some standard graphs such as path and cycle graphs, and we propose some bounds on this new parameter.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom