z-logo
open-access-imgOpen Access
Automatic Integrated Scoring Model for English Composition Oriented to Part-Of-Speech Tagging
Author(s) -
Fei Chen
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5544257
Subject(s) - computer science , artificial intelligence , natural language processing , composition (language) , annotation , word (group theory) , convolutional neural network , set (abstract data type) , residual , recurrent neural network , speech recognition , artificial neural network , philosophy , linguistics , algorithm , programming language
Part-of-speech tagging for English composition is the basis for automatic correction of English composition. The performance of the part-of-speech tagging system directly affects the performance of the marking and analysis of the correction system. Therefore, this paper proposes an automatic scoring model for English composition based on article part-of-speech tagging. First, use the convolutional neural network to extract the word information from the character level and use this part of the information in the coarse-grained learning layer. Secondly, the word-level vector is introduced, and the residual network is used to establish an information path to integrate the coarse-grained annotation and word vector information. Then, the model relies on the recurrent neural network to extract the overall information of the sequence data to obtain accurate annotation results. Then, the features of the text content are extracted, and the automatic scoring model of English composition is constructed by means of model fusion. Finally, this paper uses the English composition scoring competition data set on the international data mining competition platform Kaggle to verify the effect of the model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom