z-logo
open-access-imgOpen Access
Feature-Enhanced Occlusion Perception Object Detection for Smart Cities
Author(s) -
Jie Xu,
Hanyuan Wang,
Mingzhu Xu,
Fan Yang,
Yifei Zhou,
Xiaolong Yang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5544194
Subject(s) - computer science , perception , feature (linguistics) , artificial intelligence , computer vision , object (grammar) , object detection , occlusion , pattern recognition (psychology) , philosophy , linguistics , medicine , neuroscience , cardiology , biology
Object detection is used widely in smart cities including safety monitoring, traffic control, and car driving. However, in the smart city scenario, many objects will have occlusion problems. Moreover, most popular object detectors are often sensitive to various real-world occlusions. This paper proposes a feature-enhanced occlusion perception object detector by simultaneously detecting occluded objects and fully utilizing spatial information. To generate hard examples with occlusions, a mask generator localizes and masks discriminated regions with weakly supervised methods. To obtain enriched feature representation, we design a multiscale representation fusion module to combine hierarchical feature maps. Moreover, this method exploits contextual information by heaping up representations from different regions in feature maps. The model is trained end-to-end learning by minimizing the multitask loss. Our model obtains superior performance compared to previous object detectors, 77.4% mAP and 74.3% mAP on PASCAL VOC 2007 and PASCAL VOC 2012, respectively. It also achieves 24.6% mAP on MS COCO. Experiments demonstrate that the proposed method is useful to improve the effectiveness of object detection, making it highly suitable for smart cities application that need to discover key objects with occlusions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom