z-logo
open-access-imgOpen Access
Research on Calibration Method of Binocular Vision System Based on Neural Network
Author(s) -
Hao Zhu,
Mulan Wang,
Weiye Xu
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5542993
Subject(s) - computer science , distortion (music) , calibration , artificial intelligence , projector , computer vision , artificial neural network , camera resectioning , basis (linear algebra) , lens (geology) , binocular vision , radial basis function , operability , optics , mathematics , physics , computer network , amplifier , statistics , geometry , software engineering , bandwidth (computing)
In binocular vision inspection system, the calibration of detection equipment is the basis to ensure the subsequent detection accuracy. The current calibration methods have the disadvantages of complex calculation, low precision, and poor operability. In order to solve the above problems, the calibration method of binocular camera, the correction method of lens distortion, and the calibration method of projector in the binocular vision system based on surface structured light are studied in this paper. For lens distortion correction, on the basis of analyzing the traditional correction methods, a distortion correction method based on radial basis function neural network is proposed. Using the excellent nonlinear mapping ability of RBF neural network, the distortion correction models of different lenses can be obtained quickly. It overcomes the defect that the traditional correction model cannot adjust adaptively with the type of lens. The experimental results show that the accuracy of the method can meet the requirements of system calibration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom