z-logo
open-access-imgOpen Access
Estimation of Daily Suspended Sediment Load Using a Novel Hybrid Support Vector Regression Model Incorporated with Observer‐Teacher‐Learner‐Based Optimization Method
Author(s) -
Siyamak Doroudi,
Ahmad Sharafati,
Seyed Hossein Mohajeri
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5540284
Subject(s) - support vector machine , correlation coefficient , mean squared error , pearson product moment correlation coefficient , computer science , regression , regression analysis , mathematics , statistics , data mining , soil science , artificial intelligence , environmental science
Predicting suspended sediment load (SSL) in water resource management requires efficient and reliable predicted models. This study considers the support vector regression (SVR) method to predict daily suspended sediment load. Since the SVR has unknown parameters, the observer-teacher-learner-based Optimization (OTLBO) method is integrated with the SVR model to provide a novel hybrid predictive model. The SVR combined with the genetic algorithm (SVR-GA) is used as an alternative model. To explore the performance and application of the proposed models, five input combinations of rainfall and discharge data of Cham Siah River catchment are provided. The predictive models are assessed using various numerical and visual indicators. The results indicate that the SVR-OTLBO model offers a higher prediction performance than other models employed in the current study. Specifically, SVR-OTLBO model offers highest Pearson correlation coefficient (R = 0.9768), Willmott’s Index (WI = 0.9812), ratio of performance to IQ (RPIQ = 0.9201), and modified index of agreement (md = 0.7411) and the lowest relative root mean square error (RRMSE = 0.5371) in comparison with SVR-GA (R = 0.9704, WI = 0.9794, RPIQ = 0.8521, and md = 0.7323, 0.5617) and SVR (R = 0.9501, WI = 0.9734, RPIQ = 0.3229, md = 0.4338, and RRMSE = 1.0829) models, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom