z-logo
open-access-imgOpen Access
Compressive Spectrum Sensing with Temporal‐Correlated Prior Knowledge Mining
Author(s) -
Jianfeng Liu,
XinLin Huang,
Ping Wang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5539697
Subject(s) - computer science , compressed sensing , spectrum (functional analysis) , data mining , artificial intelligence , physics , quantum mechanics
Cognitive radio (CR) has been proposed to mitigate the spectrum scarcity issue to support heavy wireless services on sub-3GHz. Recently, broadband spectrum sensing becomes a hot topic with the help of compressive sensing technology, which will reduce the high-speed sampling rate requirement of analog-to-digital converter. This paper considers sequential compressive spectrum sensing, where the temporal correlation information between neighboring compressive sensing data will be exploited. Different from conventional compressive sensing, the previous compressive sensing data will be fused into prior knowledge in current spectrum estimation. The simulation results show that the proposed scheme can achieve 98.7% detection probability under 3.5% false alarm probability and performs the best compared with the typical BPDN and OMP schemes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom