z-logo
open-access-imgOpen Access
Buckling and Vibration Performance of a Composite Laminated Plate with Elastic Boundaries Subjected to Local Thermal Loading
Author(s) -
Yonggan Sun
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5537946
Subject(s) - materials science , buckling , vibration , boundary value problem , composite number , finite element method , composite material , composite plate , thermal , structural engineering , plate theory , mechanics , engineering , mathematics , physics , thermodynamics , acoustics , mathematical analysis
In this paper, a model is established for the calculation of the vibrations of a composite laminated plate with elastic boundary conditions subjected to local thermal loading. The model is based on first-order shear deformation theory using the finite element method. The influence of boundary conditions, heating area, and heating location on buckling and vibrations of a composite laminated plate was investigated, and there were two stages in which the critical temperature increased sharply during the transition from free boundary to simply supported and rigid fixed boundaries. The thermal buckling of locally heated laminated plates is generally not checked in practical applications unless the heated area exceeds approximately 10% of the total area of the plates. The stronger the boundary constraint is, the greater the influence of the heated area is on the vibrational frequencies of the composite laminated plate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom