z-logo
open-access-imgOpen Access
Experimental Characterization of 2 × 2 Electronically Reconfigurable Polarization Converter Unit Cells at X-Band
Author(s) -
Biswarup Rana,
In-Gon Lee,
IcPyo Hong
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/5536864
Subject(s) - diode , polarization (electrochemistry) , capacitance , optoelectronics , circular polarization , optics , engineering , materials science , pin diode , electrical engineering , electronic engineering , microstrip , physics , chemistry , electrode , quantum mechanics
In this paper, an electronically reconfigurable polarization converter unit cell operating at X-band is proposed. The polarization converter unit cell consists of a passive patch, a phase shifter, and an active patch. There are two PIN diodes on the active patch. By switching the bias conditions of those PIN diodes, an electronically reconfigurable polarization converter is conceived. Both the passive and active patches are circular, and there are circular types of slots on both patches to enhance the operating bandwidth. To compensate for the capacitance introduced by PIN diodes, an equivalent capacitance structure is introduced on the active patch. 2 × 2 unit cells are designed to check the performance of the unit cell for polarization conversion applications. In addition, a novel type of experimental characterization technique is proposed to check the performance of polarization conversion using 2 × 2 unit cells. Two WR-90 waveguide sections, two rectangular to square sections, and a power supply are taken for the measurements. The rectangular to square waveguide transition section is designed in such a way so that 2 × 2 unit cells can be perfectly adjusted on the transition section and the performance of the 2 × 2 unit cells can be measured. The simulation results of the 8 × 8 array are also added to a miniaturized X-band horn antenna to check the performance of the overall array.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom