QiShenYiQi Pill Improves Myocardial Hypertrophy Caused by Pressure Overload in Rats
Author(s) -
Shichao Lv,
Qiang Wang,
Meifang Wu,
Meng Li,
Xiaojing Wang,
Ling Xu,
Junping Zhang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/5536723
Subject(s) - pressure overload , medicine , ctgf , muscle hypertrophy , myocardial hypertrophy , cardiology , valsartan , pathological , heart failure , transforming growth factor , endocrinology , blood pressure , cardiac hypertrophy , growth factor , receptor
Pressure-overloaded myocardial hypertrophy is an independent risk factor for various cardiovascular diseases (CVDs), such as heart failure (HF), arrhythmia, and even sudden death. It is reported that QiShenYiQi pill (QSYQ) is widely used in the treatment of CVDs and can prevent pathological hypertrophy of myocardium, but its specific mechanism is still unclear. In this study, a rat model of myocardial hypertrophy was established through the pressure overload caused by abdominal aortic constriction in Wistar rats. The rats were randomly divided into model group, valsartan group, and QSYQ group, and sham-operated animals served as the control group. At the 4 and 8 weeks of intervention, the general morphology of the heart, myocardial collagen content, collagen volume factor (CVF), collagen type I, collagen type III, myocardial pathological changes, and the expression of ANP, β -MHC, TGF- β 1, and CTGF were analyzed, respectively, in order to explore the possible effect of QSYQ on the mechanism of myocardial hypertrophy. We observed that QSYQ could effectively improve myocardial hypertrophy in pressure-overloaded rats, which was related to the regulatory mechanism of TGF- β 1 and CTGF.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom