z-logo
open-access-imgOpen Access
The Application of an Adaptive Genetic Algorithm Based on Collision Detection in Path Planning of Mobile Robots
Author(s) -
Kun Hao,
Jiale Zhao,
Beibei Wang,
Yonglei Liu,
Chuanqi Wang
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5536574
Subject(s) - crossover , computer science , genetic algorithm , initialization , mathematical optimization , path (computing) , local optimum , population , algorithm , motion planning , genetic operator , collision , convergence (economics) , mutation , operator (biology) , population based incremental learning , mathematics , artificial intelligence , robot , computer security , repressor , economic growth , chemistry , sociology , biochemistry , transcription factor , programming language , demography , economics , gene
An adaptive genetic algorithm based on collision detection (AGACD) is proposed to solve the problems of the basic genetic algorithm in the field of path planning, such as low convergence path quality, many iterations required for convergence, and easily falling into the local optimal solution. First, this paper introduces the Delphi weight method to evaluate the weight of path length, path smoothness, and path safety in the fitness function, and a collision detection method is proposed to detect whether the planned path collides with obstacles. Then, the population initialization process is improved to reduce the program running time. After comprehensively considering the population diversity and the number of algorithm iterations, the traditional crossover operator and mutation operator are improved, and the adaptive crossover operator and adaptive mutation operator are proposed to avoid the local optimal solution. Finally, an optimization operator is proposed to improve the quality of convergent individuals through the second optimization of convergent individuals. The simulation results show that the adaptive genetic algorithm based on collision detection is not only suitable for simulation maps with various sizes and obstacle distributions but also has excellent performance, such as greatly reducing the running time of the algorithm program, and the adaptive genetic algorithm based on collision detection can effectively solve the problems of the basic genetic algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom