z-logo
open-access-imgOpen Access
Evaluation of Sentiment Analysis via Word Embedding and RNN Variants for Amazon Online Reviews
Author(s) -
Najla M. Alharbi,
Norah Saleh Alghamdi,
Eman H. Alkhammash,
Jehad F. Al Amri
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5536560
Subject(s) - word2vec , computer science , sentiment analysis , word embedding , artificial intelligence , word (group theory) , recurrent neural network , feature (linguistics) , machine learning , deep learning , feature extraction , term (time) , recall , data mining , embedding , natural language processing , pattern recognition (psychology) , artificial neural network , mathematics , linguistics , philosophy , physics , geometry , quantum mechanics
Consumer feedback is highly valuable in business to assess their performance and is also beneficial to customers as it gives them an idea of what to expect from new products. In this research, the aim is to evaluate different deep learning approaches to accurately predict the opinion of customers based on mobile phone reviews obtained from Amazon.com. The prediction is based on analysing these reviews and categorizing them as positive, negative, or neutral. Different deep learning algorithms have been implemented and evaluated such as simple RNN with its four variants, namely, Long Short-Term Memory Networks (LRNN), Group Long Short-Term Memory Networks (GLRNN), gated recurrent unit (GRNN), and update recurrent unit (UGRNN). All evaluated algorithms are combined with word embedding as feature extraction approach for sentiment analysis including Glove, word2vec, and FastText by Skip-grams. The five different algorithms with the three feature extraction methods are evaluated based on accuracy, recall, precision, and F1-score for both balanced and unbalanced datasets. For the unbalanced dataset, it was found that the GLRNN algorithms with FastText feature extraction scored the highest accuracy of 93.75%. This result achieved the highest accuracy on this dataset when compared with other methods mentioned in the literature. For the balanced dataset, the highest achieved accuracy was 88.39% by the LRNN algorithm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom