z-logo
open-access-imgOpen Access
A Data Preservation Method Based on Blockchain and Multidimensional Hash for Digital Forensics
Author(s) -
Gongzheng Liu,
Jingsha He,
Xinggang Xuan
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5536326
Subject(s) - computer science , hash function , blockchain , hash chain , computer security , cryptography , process (computing) , data mining , operating system
Since digital forensics becomes more and more popular, more and more attention has been paid to the originality and validity of data, and data preservation technology emerges as the times require. However, the current data preservation models and technologies are only the combination of cryptography technology, and there is a risk of being attacked and cracked. And in the process of data preservation, human participation is also needed, which may lead to data tampering. To solve problems given, this paper presents a data preservation model based on blockchain and multidimensional hash. With the decentralization and smart contract characteristics of blockchain, data can be automatically preserved without human participation to form a branch chain of custody in the unit of case, and blockchain has good antiattack performance, which is the so-called 51% attack. Meanwhile, in order to solve the problem of data confusion and hard to query caused by the excessive number of cases, hash, cryptography, and timestamps are used to form a serialized main chain of custody. Because of the confliction problem of hash and judicial trial needs to absolutely guarantee the authenticity and validity of data, multidimensional hash is used to replace regular hash. In this way, the data preservation becomes an automatic, nonhuman-interventional process. Experiments have been carried out to show the security and effectiveness of the proposed model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom