Stability, Viscosity, and Tribology Properties of Polyol Ester Oil-Based Biolubricant Filled with TEMPO-Oxidized Bacterial Cellulose Nanofiber
Author(s) -
Dieter Rahmadiawan,
Hairul Abral,
Nasruddin Nasruddin,
Zahrul Fuadi
Publication year - 2021
Publication title -
international journal of polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 33
eISSN - 1687-9430
pISSN - 1687-9422
DOI - 10.1155/2021/5536047
Subject(s) - tribology , materials science , viscose , polyol , rheology , viscosity , composite material , viscosity index , chemical engineering , thermal stability , cellulose , base oil , organic chemistry , polyurethane , chemistry , scanning electron microscope , engineering
This research is aimed at studying the stability and tribology properties of the polyol ester oil- (POE-) based biolubricant mixed with various filler loadings from microparticle of TEMPO-oxidized bacterial cellulose (NDCt) as an additive and sorbitan monostearate (Span 60) as a surfactant. Morphology, rheology, and tribology tests were conducted. The addition of NDCt and Span 60 to pure POE as a base fluid showed elevated viscosity, lower value of coefficient friction (COF), and a remarkable decrease in the wear rate (WR). The presence of 0.6 wt% NDCt and 1.8 wt% Span 60 in POE (N2S4) decreased the COF value by 79% in comparison to POE. At room temperature, this N2S4 biolubricant sample showed a higher thermal conductivity by 4% and lower WR value by 49% compared to POE. This study introduced the preparation of the ecofriendly biolubricant filled with NDCt improving the tribology properties remarkably.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom