Hyperspectral Image Denoising via Nonconvex Logarithmic Penalty
Author(s) -
Shuo Wang,
Zhibin Zhu,
Ruwen Zhao,
Benxin Zhang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5535169
Subject(s) - hyperspectral imaging , logarithm , impulse noise , regularization (linguistics) , gaussian noise , noise reduction , penalty method , mathematics , mathematical optimization , noise (video) , computer science , artificial intelligence , image (mathematics) , algorithm , computer vision , mathematical analysis , pixel
Hyperspectral images (HSIs) can help deliver more reliable representations of real scenes than traditional images and enhance the performance of many computer vision tasks. However, in real cases, an HSI is often degraded by a mixture of various types of noise, including Gaussian noise and impulse noise. In this paper, we propose a logarithmic nonconvex regularization model for HSI mixed noise removal. The logarithmic penalty function can approximate the tensor fibered rank more accurately and treats singular values differently. An alternating direction method of multipliers (ADMM) is also presented to solve the optimization problem, and each subproblem within ADMM is proven to have a closed-form solution. The experimental results demonstrate the effectiveness of the proposed method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom