z-logo
open-access-imgOpen Access
Performance Modeling Analysis of D-MSMR-CARQ with Relay Selection in Wireless Sensor Networks
Author(s) -
Yongqiang Zhou,
Huan Qian,
Qihao Wang,
Suoping Li
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5533926
Subject(s) - relay , computer science , throughput , transmission (telecommunications) , retransmission , channel (broadcasting) , selection (genetic algorithm) , computer network , protocol (science) , markov chain , channel state information , real time computing , wireless , telecommunications , medicine , power (physics) , physics , alternative medicine , pathology , quantum mechanics , artificial intelligence , machine learning
Reliable and efficient real-time transmission is an important and challenging issue for wireless sensor networks (WSNs). Truncated retransmission times and relay selection can effectively reduce transmission delay and improve system throughput. A new direct multisource multirelay cooperative automatic repeat request (D-MSMR-CARQ) protocol based on truncation with two relay selection methods in WSNs is analytically analyzed in this paper. Firstly, based on two different relay selection methods under the maximum ratio combining (MRC), the discrete time Markov chain (DTMC) model of D-MSMR-CARQ protocol and state space is established. Secondly, for each D-MSMR-CARQ protocol based on different relay selection method, we obtain the closed-form expressions of the system average transmission delay and the expressions of the system throughput through state transition probabilities. Finally, numerical results reveal that the first relay selection method outperforms the second relay selection method on the average transmission delay performance for the proposed protocol. More specifically, the delay performance of the proposed protocol can be improved by 13% compared with the nondirect-link protocol when the channel environment is the same; the proposed protocol improves the throughput performance by 47% compared with the nondirect protocol when the channel environment is harsh under the same simulation parameters. Furthermore, the optimal number of source nodes and relay nodes is determined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom