z-logo
open-access-imgOpen Access
Roof Failure Mechanism and Control Technology of Large Section Open‐Off Cut in Soft Rock Strata with Thin Thickness
Author(s) -
Chen Li,
Jun Li,
Xiaoyong Lian,
Yongen Li,
Qi Xue,
Jicheng Feng
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5533741
Subject(s) - roof , instability , geotechnical engineering , computer simulation , section (typography) , coal mining , geology , mining engineering , rock mass classification , failure mechanism , structural engineering , engineering , coal , computer science , mechanics , simulation , physics , waste management , operating system
The open-off cut is used for equipment installation of working face before underground mining, and its sectional size is larger than that of the mining roadway. Therefore, the stability of open-off cut surrounding rock determines whether the panel can be put into operation. To solve the roof instability of open-off cut in the Wanli No.1 coal mine, the roof failure mechanism of open-off cut under weak composite rock strata with thin thickness was studied by field monitoring, theoretical analysis, and numerical simulation. First, the characteristics of surrounding rock and the basic law of strata behaviors were obtained by detailed field monitoring. Afterward, FLAC3D numerical simulation and mechanical analysis were used to obtain the main mechanical control parameters of surrounding rock instability, and the existence of a soft interlayer above the roof is the main cause of roof instability. Based on this, the supporting parameters of the open-off cut were optimized and adjusted. The optimized parameters were applied to the adjacent 31207 open-off cut. The engineering practice showed that the optimized supporting parameters have an ideal control effect on roof stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom