z-logo
open-access-imgOpen Access
CPEH: A Clustering Protocol for the Energy Harvesting Wireless Sensor Networks
Author(s) -
Han Yu,
Jian Su,
Guangjun Wen,
Yiran He,
Jian Li
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5533374
Subject(s) - computer science , wireless sensor network , cluster analysis , energy harvesting , computer network , routing protocol , base station , node (physics) , throughput , cluster (spacecraft) , protocol (science) , distributed computing , energy (signal processing) , wireless , real time computing , routing (electronic design automation) , telecommunications , artificial intelligence , engineering , medicine , statistics , mathematics , alternative medicine , pathology , structural engineering
In the last decade, energy harvesting wireless sensor network (EHWSN) has been well developed. By harvesting energy from the surrounding environment, sensors in EHWSN remove the energy constraint and have an unlimited lifetime in theory. The longlasting character makes EHWSN suitable for Industry 4.0 applications that usually need sensors to monitor the machine state and detect errors continuously. Most wireless sensor network protocols have become inefficient in EHWSN due to neglecting the energy harvesting property. In this paper, we propose CPEH, which is a clustering protocol specially designed for the EHWSN. CPEH considers the diversity of the energy harvesting ability among sensors in both cluster formation and intercluster communication. It takes the node’s information such as local energy state, local density, and remote degree into account and uses fuzzy logic to conduct the cluster head selection and cluster size allocation. Meanwhile, the Ant Colony Optimization (ACO) as a reinforcement learning strategy is utilized by CPEH to discover a highly efficient intercluster routing between cluster heads and the base station. Furthermore, to avoid cluster dormancy, CPEH introduces the Cluster Head Relay (CHR) strategy to allow the proper cluster member to undertake the cluster head that is energy depletion. We make a detailed simulation of CPEH with some famous clustering protocols under different network scenarios. The result shows that CPEH can effectively improve the network throughput and delivery ratio than others as well as successfully solve the cluster dormancy problem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom