Rheological Properties of Argillaceous Intercalation under the Combination of Static and Intermittent Dynamic Shear Loads
Author(s) -
Xin Zhang,
Qian Dong,
Xiangping Zhang,
Ming Lang,
Suzhi Zhao,
Zhuoang Chen,
Jinshan Sun
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5533086
Subject(s) - shearing (physics) , rheology , geotechnical engineering , geology , shear (geology) , shear stress , dynamic loading , materials science , dynamic load testing , composite material
The construction and long-term operation stage of the rock slope with argillaceous interlayer will be subjected to intermittent dynamic loads, such as blasting and earthquake. For the argillaceous interlayer in the rock slope, its rheological properties are not only related to the initial stress state caused by the gravity of the overlying rock mass but also affected by intermittent dynamic loads. In order to investigate the rheological properties of argillaceous intercalation under the combination of static and intermittent dynamic shear loads, the rheological tests of argillic intercalated soil samples under static shear, static and cyclic dynamic shear, and static and intermittent dynamic shear were carried out, and the rheological deformation characteristics of soil samples under different shear conditions were analyzed. The results show that when the soil specimens in the static shear rheological process are disturbed by intermittent dynamic shearing load, the intermittent dynamic disturbances might have no remarkable influence on the rheological deformation of the specimens if the initial static shearing stress and intermittent dynamic shearing stress were comparatively low. However, low-intensity intermittent dynamic disturbances might accelerate the rheological deformation process of the specimens remarkably if the initial static shearing stress state was close to their shearing strength. There was a stress threshold when the soil specimens failed under the static and cycling dynamic shear and static and intermittent dynamic shear, which is determined by the sum of static shear stress and dynamic shear stress peak. For rock slopes controlled by rheological weak structural planes and influenced by long-term blasting vibrations, the transient and long-term dynamic stability should be comprehensively analyzed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom