z-logo
open-access-imgOpen Access
Selection of an Effective Hand Sanitizer to Reduce COVID‐19 Effects and Extension of TOPSIS Technique Based on Correlation Coefficient under Neutrosophic Hypersoft Set
Author(s) -
Abdul Samad,
Rana Muhammad Zulqarnain,
Emre Sermutlu,
Rifaqat Ali,
Imran Siddique,
Fahd Jarad,
Thabet Abdeljawad
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5531830
Subject(s) - topsis , computer science , correlation coefficient , multiple criteria decision analysis , set (abstract data type) , similarity (geometry) , relevance (law) , data mining , correlation , mathematical optimization , mathematics , artificial intelligence , machine learning , operations research , political science , law , image (mathematics) , programming language , geometry
Correlation coefficients are used to tackle many issues that include indistinct as well as blurred information excluding is not able to deal with the general fuzziness along with obscurity of the problems that have various information. The correlation coefficient (CC) between two variables plays an important role in statistics. Likewise, the accuracy of relevance assessment depends on the information in a set of discourses. The data collected for numerous statistical studies is full of exceptions. The concept of the neutrosophic hypersoft set (NHSS) is a parameterized family that deals with the subattributes of the parameters and is a proper extension of the neutrosophic soft set to accurately assess the deficiencies, anxiety, and uncertainty in decision-making. Compared with existing research, NHSS can accommodate more uncertainty, which is the most significant technique for describing fuzzy information in the decision-making process. The core objective of follow-up research is to develop the concept and characteristics of CC and the weighted correlation coefficient (WCC) of NHSS. We also introduced some aggregation operators in the considered environment, which can help us establish a prioritization technique for order preference by similarity to the ideal solution (TOPSIS) based on CC and WCC under NHSS. A decision-making strategy is established to solve multicriteria group decision-making (MCGDM) problems utilizing developed methodology. Moreover, the proposed method is utilized for the selection of an effective hand sanitizer during the COVID-19 pandemic to ensure the validity of the proposed approach. The practicality, effectivity, and flexibility of the current approach are proved through comparative analysis with the assistance of some existing studies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom