z-logo
open-access-imgOpen Access
Tourism Growth Prediction Based on Deep Learning Approach
Author(s) -
Xiaoling Ren,
Yanyan Li,
Juanjuan Zhao,
Yan Qiang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5531754
Subject(s) - tourism , computer science , artificial intelligence , deep learning , machine learning , geography , archaeology
The conventional tourism demand prediction models are currently facing several challenges due to the excess number of search intensity indices that are used as indicators of tourism demand. In this work, the framework for deep learning-based monthly prediction of the volumes of Macau tourist arrivals was presented. The main objective in this study is to predict the tourism growth via one of the deep learning algorithms of extracting new features. The outcome of this study showed that the performance of the adopted deep learning framework was better than that of artificial neural network and support vector regression models. Practitioners can rely on the identified relevant features from the developed framework to understand the nature of the relationships between the predictive factors of tourist demand and the actual volume of tourist arrival.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom