Adaptive Routing Strategy Based on Improved Double Q-Learning for Satellite Internet of Things
Author(s) -
Jian Zhou,
Xiaotian Gong,
Lijuan Sun,
Yong Xie,
Xiaoyong Yan
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5530023
Subject(s) - computer science , computer network , network packet , overhead (engineering) , node (physics) , reinforcement learning , routing table , routing (electronic design automation) , adaptive routing , packet forwarding , internet of things , geographic routing , routing protocol , equal cost multi path routing , distributed computing , dynamic source routing , computer security , artificial intelligence , structural engineering , engineering , operating system
Satellite Internet of Things (S-IoT), which integrates satellite networks with IoT, is a new mobile Internet to provide services for social networks. However, affected by the dynamic changes of topology structure and node status, the efficient and secure forwarding of data packets in S-IoT is challenging. In view of the abovementioned problem, this paper proposes an adaptive routing strategy based on improved double Q-learning for S-IoT. First, the whole S-IoT is regarded as a reinforcement learning environment, and satellite nodes and ground nodes in S-IoT are both regarded as intelligent agents. Each node in the S-IoT maintains two Q tables, which are used for selecting the forwarding node and for evaluating the forwarding value, respectively. In addition, the next hop node of data packets is determined depending on the mixed Q value. Second, in order to optimize the Q value, this paper makes improvements on the mixed Q value, the reward value, and the discount factor, respectively, based on the congestion degree, the hop count, and the node status. Finally, we perform extensive simulations to evaluate the performance of this adaptive routing strategy in terms of delivery rate, average delay, and overhead ratio. Evaluation results demonstrate that the proposed strategy can achieve more efficient and secure routing in the highly dynamic environment compared with the state-of-the-art strategies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom