z-logo
open-access-imgOpen Access
Radiologists versus Deep Convolutional Neural Networks: A Comparative Study for Diagnosing COVID-19
Author(s) -
Abdulkader Helwan,
Mohammad Khaleel Sallam Ma’aitah,
Hani Hamdan,
Dilber Uzun Ozsahin,
Özüm Tunçyürek
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/5527271
Subject(s) - covid-19 , convolutional neural network , artificial intelligence , generalization , test set , deep learning , medicine , computer science , computed tomography , artificial neural network , pattern recognition (psychology) , radiology , pathology , mathematics , mathematical analysis , infectious disease (medical specialty) , disease , outbreak
The reverse transcriptase polymerase chain reaction (RT-PCR) is still the routinely used test for the diagnosis of SARS-CoV-2 (COVID-19). However, according to several reports, RT-PCR showed a low sensitivity and multiple tests may be required to rule out false negative results. Recently, chest computed tomography (CT) has been an efficient tool to diagnose COVID-19 as it is directly affecting the lungs. In this paper, we investigate the application of pre-trained models in diagnosing patients who are positive for COVID-19 and differentiating it from normal patients, who tested negative for coronavirus. The study aims to compare the generalization capabilities of deep learning models with two thoracic radiologists in diagnosing COVID-19 chest CT images. A dataset of 3000 images was obtained from the Near East Hospital, Cyprus, and used to train and to test the three employed pre-trained models. In a test set of 250 images used to evaluate the deep neural networks and the radiologists, it was found that deep networks (ResNet-18, ResNet-50, and DenseNet-201) can outperform the radiologists in terms of higher accuracy (97.8%), sensitivity (98.1%), specificity (97.3%), precision (98.4%), and F1-score (198.25%), in classifying COVID-19 images.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom