z-logo
open-access-imgOpen Access
Protective Effects of Hydroalcoholic Extract of Rosa canina Fruit on Vancomycin-Induced Nephrotoxicity in Rats
Author(s) -
Hossein Sadeghi,
Ehsan Karimizadeh,
Heibatollah Sadeghi,
Esmaeel Panahi Kokhdan,
Mahboubeh Mansourian,
Kazem AbbaszadehGoudarzi,
Mansoureh Shokripour,
Arash Asfaram,
Amir Hossein Doustimotlagh
Publication year - 2021
Publication title -
journal of toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.829
H-Index - 36
eISSN - 1687-8205
pISSN - 1687-8191
DOI - 10.1155/2021/5525714
Subject(s) - vancomycin , nephrotoxicity , traditional medicine , biology , medicine , pharmacology , kidney , staphylococcus aureus , bacteria , genetics , endocrinology
Vancomycin-induced nephrotoxicity (VIN) has been reported to occur in 5–35% of recipient patients. The aims of the study were to evaluate protective effects of Rosa canina (RC) on VIN in rats. Rats were randomly divided into five groups as follows: control group I, group II (received VAN 400 mg/kg/day, every 12 h at doses of 200 mg/kg/day, for 7 consecutive days), group III (VAN + RC 250 mg/kg/day, for 7 consecutive days), group IV (VAN + RC 500 mg/kg/day, for consecutive days), and group V (received RC 500 mg/kg/day, for consecutive 7 days). On the eighth day after anesthetizing the animals, blood samples were taken from the heart, and then, the kidneys were removed to investigate kidney function, oxidative stress, and histopathological marker. Also, the chemical composition of RC extract was identified by GC-MS analysis. Oral dose of 500 mg/kg RC extract significantly reduced the serum levels of blood urea nitrogen (BUN), creatinine (Cr), malondialdehyde (MDA), and nitric oxide (NO) and also the kidney tissue MDA, protein carbonyl, and NO metabolites (nitrite) levels compared to the VAN-treated group ( P < 0.05). Based on histopathological analysis, RC extract at the dose of 500 mg/kg inhibited the destructive effects of VAN on kidney tissues. GC-MS analysis indicated that the main compositions were found to be lactose (21.96%), 3-t-butyloxaziridine (20.91%), and 5-oxymethylfurfurole (16.75%). The results indicated that oral administration of RC was able to reduce VAN-induced nephrotoxicity in rats, possibly through antioxidant pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom