Observation of Spin Reorientation Transitions in Lead and Titanium‐Modified BiFeO3 Multiferroics
Author(s) -
Ashwini Kumar,
Poorva Sharma,
Qi Li,
Fujun Qiu,
Jianhui Yan,
Tang Jingyou,
Guolong Tan
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/5525158
Subject(s) - multiferroics , materials science , condensed matter physics , titanium , spin (aerodynamics) , ferroelectricity , metallurgy , thermodynamics , optoelectronics , physics , dielectric
We report the synthesis and basic characterization details of bulk Bi1 − xPbxFe1 − xTixO3 (x = 0.05 and 0.1) polycrystalline samples, which have been synthesized using the conventional solid-state route. We studied the effects of partially doping of Pb and Ti ion on structural, vibrational, and magnetic properties of multiferroic BiFeO3. X-ray diffraction (XRD) was used for crystallographic studies, followed by Rietveld refinement, and phase formation of the compounds was confirmed, which indicates that the sample has rhombohedral (R3c, 100%) symmetry for x = 0.05 and R3c (98%) + P4mm (2%) symmetry for x = 0.1. X-ray absorption spectroscopy has been probed at Fe L2,3 and O K edges to determine the valence (charge) state of Fe in BiFeO3. Interestingly, the magnetic measurement results revealed the existence of spin reorientation transition in Pb and Ti-modified BiFeO3, which indicates that the BiFeO3 samples studied may find promising applications in memory and spintronic devices.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom