Dispersant for Reducing Mud Cakes of Slurry Shield Tunnel Boring Machine in Sticky Ground
Author(s) -
Shisen Zhao,
Shuchen Li,
Zeen Wan,
Manling Wang
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/5524489
Subject(s) - dispersant , slurry , materials science , viscosity , shield , rheology , suspension (topology) , composite material , geotechnical engineering , dispersion (optics) , geology , petrology , physics , mathematics , homotopy , pure mathematics , optics
When a slurry shield tunnel boring machine (TBM) encounters sticky ground during tunneling, mud cakes often occur on the cutter head due to the high stickiness of soil. The mud cakes caused several negative issues, such as high torque demand, advancement rate reduction, and additional costs. Existing studies have largely focused on Earth pressure balance TBMs; research on formation and mitigation measures of mud cakes in slurry shield TBMs is limited. Therefore, this study proposes the addition of dispersant to the slurry to prevent mud cakes during the tunneling of slurry shield TBMs by reducing stickiness of excavated clay. The basic properties of slurry were measured experimentally, and the effectiveness of dispersant in reducing the potential for mud cakes was investigated through mixing tests and viscosity experiments. A statistical analysis of the data was performed to determine relationships between slurry properties and material behaviors. The results showed that the slurry with dispersant had a lower viscosity and formed filter cakes more quickly, thereby meeting the performance requirements of a supporting fluid for slurry shield TBMs. Further, dispersant effectively reduced the empirical stickiness ratio and suspension viscosity. Therefore, a slurry with an appropriate dispersant content could effectively reduce the potential for mud cake formation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom