Carleson Measure of Harmonic Schwarzian Derivatives Associated with a Finitely Generated Fuchsian Group of the Second Kind
Author(s) -
Guangming Hu,
Yutong Liu,
Yu Sun,
Xinjie Qian
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 28
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/5523454
Subject(s) - measure (data warehouse) , group (periodic table) , fuchsian group , pure mathematics , mathematics , schwarzian derivative , kleinian group , harmonic , finitely generated abelian group , computer science , physics , quantum mechanics , database
Let S H f be the Schwarzian derivative of a univalent harmonic function f in the unit disk D , compatible with a finitely generated Fuchsian group G of the second kind. We show that if S H f 2 1 − z 2 3 d x d y satisfies the Carleson condition on the infinite boundary of the Dirichlet fundamental domain F of G , then S H f 2 1 − z 2 3 d x d y is a Carleson measure in D .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom