Kernel Regression Residual Decomposition Method to Detect Rolling Element Bearing Faults
Author(s) -
Xiaoqian Wang,
Dali Sheng,
Jinlian Deng,
Zhang We,
Jie Cai,
Weisheng Zhao,
Jiawei Xiang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5523098
Subject(s) - hilbert–huang transform , residual , signal (programming language) , kernel (algebra) , thresholding , rolling element bearing , fault (geology) , vibration , signal processing , kernel regression , algorithm , fault detection and isolation , computer science , engineering , artificial intelligence , regression , electronic engineering , mathematics , digital signal processing , white noise , statistics , acoustics , actuator , image (mathematics) , telecommunications , programming language , physics , combinatorics , seismology , geology
The raw vibration signal carries a great deal of information representing the mechanical equipment's health conditions. However, in the working condition, the vibration response signals of faulty components are often characterized by the presence of different kinds of impulses, and the corresponding fault features are always immersed in heavy noises. Therefore, signal denoising is one of the most important tasks in the fault detection of mechanical components. As a time-frequency signal processing technique without the support of the strictly mathematical theory, empirical mode decomposition (EMD) has been widely applied to detect faults in mechanical systems. Kernel regression (KR) is a well-known nonparametric mathematical tool to construct a prediction model with good performance. Inspired by the basic idea of EMD, a new kernel regression residual decomposition (KRRD) method is proposed. Nonparametric Nadaraya–Watson KR and a standard deviation (SD) criterion are employed to generate a deep cascading framework including a series of high-frequency terms denoted by residual signals and a final low-frequency term represented by kernel regression signal. The soft thresholding technique is then applied to each residual signal to suppress noises. To illustrate the feasibility and the performance of the KRRD method, a numerical simulation and the faulty rolling element bearings of well-known open access data as well as the experimental investigations of the machinery simulator are performed. The fault detection results show that the proposed method enables the recognition of faults in mechanical systems. It is expected that the KRRD method might have a similar application prospect of EMD.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom