Role of SIRT1 in Hepatic Encephalopathy: In Vivo and In Vitro Studies Focusing on the NLRP3 Inflammasome
Author(s) -
Fangzhou Jiao,
Yao Wang,
Qian Chen,
Pan Cao,
Chunxia Shi,
Maohua Pei,
Luwen Wang,
Zuojiong Gong
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/5522708
Subject(s) - inflammasome , neurotoxicity , thioacetamide , microglia , oxidative stress , in vivo , hepatic encephalopathy , activator (genetics) , in vitro , pharmacology , medicine , chemistry , inflammation , biochemistry , biology , toxicity , cirrhosis , receptor , microbiology and biotechnology
Hepatic encephalopathy (HE) is a neuropsychiatric disorder resulting from acute or chronic liver failure. This study is aimed at investigating the therapeutic effects and mechanisms of SIRT1 in thioacetamide- (TAA-) induced rat HE models. A selective activator (CAY10602) and inhibitor (EX527) of SIRT1 were used in this study. All male rats were separated into control, TAA, CAY10602+TAA, and EX527+TAA groups. Histological damage, liver function, serum ammonia, behavioral changes, and brain oxidative stress were measured in each group. Western blotting was used to measure SIRT1, NLRP3, ASC, and IL-1 β protein expression. The results showed that CAY10602 alleviated liver injury, improved neurological decline, reduced microglial activation and brain oxidative stress, and improved the survival rates of HE rats. Moreover, CAY10602 inhibited activation of the NLRP3 inflammasome in microglia of the brain cortex in HE rats. Next, cell experiments confirmed that CAY10602 inhibited activation of the NLRP3 inflammasome in BV2 microglial cells. However, inhibition of SIRT1 by EX527 or lentivirus could enhance activation of the NLRP3 inflammasome in this process. Finally, CAY10602 reduced the neurotoxicity induced by high levels of ammonia in HT22 cells. Taken together, CAY10602 alleviates TAA-induced HE by suppressing microglial activation and the NLRP3 inflammasome and reducing the neurotoxicity of NH 4 Cl in HT22 cells. A pharmacologic activator of SIRT1 may be a promising approach for the treatment of HE.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom