The Effects of Harvesting on the Dynamics of a Leslie–Gower Model
Author(s) -
Jingli Xie,
Hanyan Liu,
Danfeng Luo
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/5520758
Subject(s) - hopf bifurcation , limit cycle , mathematics , bifurcation , limit (mathematics) , stability (learning theory) , dynamics (music) , supercritical fluid , statistical physics , control theory (sociology) , computer science , mathematical analysis , physics , nonlinear system , thermodynamics , control (management) , quantum mechanics , machine learning , artificial intelligence , acoustics
In this paper, we study a Leslie–Gower predator-prey model with harvesting effects. We carry out local bifurcation analysis and stability analysis. Under certain conditions, the model is shown to undergo a supercritical Hopf bifurcation resulting in a stable limit cycle. Numerical simulations are presented to illustrate our theoretic results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom