To Determine Pivotal Genes Driven by Methylated DNA in Obstructive Sleep Apnea Hypopnea Syndrome
Author(s) -
Yan Li,
Yajuan Zhang
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/5520325
Subject(s) - dna methylation , obstructive sleep apnea , gene , biology , mechanism (biology) , bioinformatics , genetics , methylation , pathogenesis , medicine , immunology , gene expression , philosophy , epistemology
Obstructive sleep apnea syndrome (OSAHS) is a widespread respiratory dysfunction that has attracted more and more attention in recent years. Recently, a large number of studies have shown that abnormal DNA methylation epigenetically silences genes necessary for the pathogenesis of human diseases. However, the exact mechanism of abnormal DNA methylation in OSAHS is still elusive. In this study, we downloaded the OSAHS data from the GEO database. Our data for the first time revealed 520 hypermethylated genes and 889 hypomethylated genes in OSAHS. Bioinformatics analysis revealed that these abnormal methylated genes exhibited an association with the regulation of angiogenesis, apoptosis, Wnt, and ERBB2 signaling pathways. PPI network analysis displayed the interactions among these genes and validated several hub genes, such as GPSM2, CCR8, TAS2R20, TAS2R4, and TAS2R5, which were related to regulating liganded Gi-activating GPCR and the transition of mitotic metaphase/anaphase. In conclusion, our study offers a new hint of understanding the molecular mechanisms in OSAHS progression and will provide OSAHS with newly generated innovative biomarkers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom