z-logo
open-access-imgOpen Access
A Distributed Congestion Control Strategy Using Harmonic Search Algorithm in Internet of Vehicles
Author(s) -
Meiyu Pang,
Jianing Shen,
Lixiu Wu
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/5519492
Subject(s) - computer science , harmony search , network congestion , quality of service , computer network , jitter , network packet , real time computing , transmission (telecommunications) , transmission delay , throughput , packet loss , data transmission , wireless , telecommunications , artificial intelligence
Aiming at the diversified requirements of network application QoS (Quality of Service) in the terminal equipment of Internet of Vehicles, this paper proposes a distributed congestion control strategy based on harmony search algorithm and the Throughput Evaluation Priority Adjustment Model (TEPAM) to ensure real-time transmission of high-priority data messages related to security applications. Firstly, the channel usage rate is periodically detected and the congestion is judged; then, in order to minimize delay and delay jitter as the goal, harmony search algorithm is utilized to perform global search to obtain a better solution for the transmission range and transmission rate. Secondly, packet priority and the TEPAM are applied to indicate the sending right of each packet. The data message priority and throughput percentage factor are used to express the transmission weight of each data message. Besides, the real-time evaluation of path state in MPTCP is carried out by the batch estimation theory model, which realizes the on-demand dynamic adjustment of the network congestion time window. Finally, SUMO, MOVE, and NS2 tools are used to create a VANET-like environment to evaluate the performance of the proposed congestion control strategy. Experimental results show that the proposed method is superior to other three methods in the four indicators of average delay time, average transmission rate, number of retransmissions, and packet loss rate compared with other advanced methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom