z-logo
open-access-imgOpen Access
Research on Prediction of Investment Fund’s Performance before and after Investment Based on Improved Neural Network Algorithm
Author(s) -
Cong Gu
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5519213
Subject(s) - artificial neural network , computer science , particle swarm optimization , algorithm , machine learning , artificial intelligence , workflow , investment fund , finance , data mining , economics , database , market liquidity
There are more and more popular investment fund projects in the continuous economic development; the prediction and performance continuity become hot topics in the financial field. Scholars’ enthusiasm for this also reflects the domestic fund primary stage progress, and there is a huge application demand in China. The prediction of fund performance can help investors to avoid risks and improve returns and help managers to learn more unknown information from the prediction for the sake of guide market well and manage the market orderly. In the past research, the traditional way is to use the advantages of neural network to build a model to predict the continuous trend foundation performance, but the author found that the traditional single neural network (NN) algorithm has a large error value in the research. With the discussion, the particle swarm optimization (PSO) algorithm is added to the radial basis function (BRF) neural network, and PSO is conditioned to optimize and improve the RBF NN combining the advantages of both sides; a new set of PSO-RBF neural network security fund performance prediction method is summed up, which optimizes the structure and workflow of the algorithm. In the research, the author takes the real data as the reference and compares the prediction results with the traditional method RBF and the improved PSO-RBF. In the prediction results of the continuous trend, the highest value, and the lowest value in the period of the security fund performance, the new PSO-RBF has a good prediction in the fund performance prediction, and its accuracy rate is greatly improved compared with the traditional method Sheng, with good application value, and is worth popularizing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom