z-logo
open-access-imgOpen Access
UAV Task Allocation Based on Clone Selection Algorithm
Author(s) -
Xiaopan Zhang,
Xingjun Chen
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5518927
Subject(s) - computer science , selection (genetic algorithm) , task (project management) , selection algorithm , algorithm , clone (java method) , distributed computing , artificial intelligence , management , economics , dna , biology , genetics
With the continuous development of computer and network technology, the large-scale and clustered operations of drones have gradually become a reality. How to realize the reasonable allocation of UAV cluster combat tasks and realize the intelligent optimization control of UAV cluster is one of the most challenging difficulties in UAV cluster combat. Solving the task allocation problem and finding the optimal solution have been proven to be an NP-hard problem. This paper proposes a CSA-based approach to simultaneously optimize four objectives in multi-UAV task allocation, i.e., maximizing the number of successfully allocated tasks, maximizing the benefits of executing tasks, minimizing resource costs, and minimizing time costs. Experimental results show that, compared with the genetic algorithm, the proposed method has better performance on solving the UAV task allocation problem with multiple objectives.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom