An Efficient Decision Support System for the Selection of Appropriate Crowd in Crowdsourcing
Author(s) -
Huang Yong-jun,
Shah Nazir,
WU Ji-yu,
Fida Hussain Khoso,
Farhad Ali,
Habib Ullah Khan
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5518878
Subject(s) - crowdsourcing , computer science , task (project management) , selection (genetic algorithm) , pairwise comparison , hierarchy , machine learning , artificial intelligence , data science , engineering , world wide web , systems engineering , economics , market economy
Crowdsourcing is a complex task-solving model that utilizes humans for solving organizational specific problems. For assigning a crowdsourced task to an online crowd, crowd selection is carried out to select appropriate crowd for achieving the task. The efficiency and effectiveness of crowdsourcing may fail if irrelevant crowd is selected for performing a task. Early decisions regarding selection of a crowd can ultimately lead to successful completion of tasks. To select most appropriate crowd from crowdsourcing, this paper presents a decision support system (DSS) for appropriate selection of crowd. The system has been implemented in the Superdecision tool by plotting hierarchy of goals, criteria, and alternatives. Various calculations have been done for performing the proposed research. Results of the study reveal that the proposed system is effective and efficient for selection of crowd in crowdsourcing by performing various pairwise computation of the study.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom