z-logo
open-access-imgOpen Access
Assessing the Performance of the Discrete Generalised Pareto Distribution in Modelling Non-Life Insurance Claims
Author(s) -
Samuel K.-B. Dzidzornu,
Richard Minkah
Publication year - 2021
Publication title -
journal of probability and statistics
Language(s) - English
Resource type - Journals
eISSN - 1687-9538
pISSN - 1687-952X
DOI - 10.1155/2021/5518583
Subject(s) - akaike information criterion , estimator , mathematics , pareto distribution , pareto principle , lomax distribution , generalized pareto distribution , distribution (mathematics) , pareto interpolation , bayesian probability , statistics , bayes estimator , econometrics , extreme value theory , mathematical analysis
The generalised Pareto distribution (GPD) offers a family of probability spaces which support threshold exceedances and is thus suitable for modelling high-end actuarial risks. Nonetheless, its distributional continuity presents a critical limitation in characterising data of discrete forms. Discretising the GPD, therefore, yields a derived distribution which accommodates the count data while maintaining the essential tail modelling properties of the GPD. In this paper, we model non-life insurance claims under the three-parameter discrete generalised Pareto (DGP) distribution. Data for the study on reported and settled claims, spanning the period 2012–2016, were obtained from the National Insurance Commission, Ghana. The maximum likelihood estimation (MLE) principle was adopted in fitting the DGP to yearly and aggregated data. The estimation involved two steps. First, we propose a modification to the μ and μ + 1 frequency method in the literature. The proposal provides an alternative routine for generating initial estimators for MLE, in cases of varied count intervals, as is a characteristic of the claim data under study. Second, a bootstrap algorithm is implemented to obtain standard errors of estimators of the DGP parameters. The performance of the DGP is compared to the negative binomial distribution in modelling the claim data using the Akaike and Bayesian information criteria. The results show that the DGP is appropriate for modelling the count of non-life insurance claims and provides a better fit to the regulatory claim data considered.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom