Real-Time Prediction of the Trend of Ground Motion Intensity Based on Deep Learning
Author(s) -
Tao Liu,
Zhijun Dai
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/5518204
Subject(s) - intensity (physics) , acceleration , ground motion , peak ground acceleration , artificial neural network , subnetwork , motion (physics) , set (abstract data type) , computer science , artificial intelligence , engineering , structural engineering , physics , computer security , classical mechanics , quantum mechanics , programming language
In order to predict the intensity of earthquake damage in advance and improve the effectiveness of earthquake emergency measures, this paper proposes a deep learning model for real-time prediction of the trend of ground motion intensity. The input sample is the real-time monitoring recordings of the current received ground motion acceleration. According to the different sampling frequencies, the neural network is constructed by several subnetworks, and the output of each subnetwork is combined into one. After the training and verification of the model, the results show that the model has an accuracy rate of 75% on the testing set, which is effective on real-time prediction of the ground motion intensity. Moreover, the correlation between the Arias intensity and structural damage is stronger than the correlation between peak acceleration and structural damage, so the model is useful for determining real-time response measures on earthquake disaster prevention and mitigation compared with the current more common antiseismic measures based on predictive PGA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom