z-logo
open-access-imgOpen Access
Berbamine Inhibits Cell Proliferation and Migration and Induces Cell Death of Lung Cancer Cells via Regulating c-Maf, PI3K/Akt, and MDM2-P53 Pathways
Author(s) -
Lili Liu,
Zhiying Xu,
BinBin Yu,
Liyuan Tao,
Ying Cao
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/5517143
Subject(s) - viability assay , protein kinase b , cell growth , pi3k/akt/mtor pathway , mtt assay , cell migration , microbiology and biotechnology , a549 cell , cancer research , cancer cell , chemistry , programmed cell death , cell , apoptosis , biology , cancer , biochemistry , genetics
Berbamine (BBM) is a natural product isolated from Berberis amurensis Rupr. We investigated the influence of BBM on the cell viability, proliferation, and migration of lung cancer cells and explored the possible mechanisms. The cell viability and proliferation of lung cancer cells were evaluated by MTT assay, EdU assay, and colony formation assay. Migration and invasion abilities of cancer cells were determined through wound scratch assay and Transwell assay. Cell death was evaluated by cell death staining assay and ELISA. The expressions of proteins were evaluated using western blot assay. A xenograft mouse model derived from non-small-cell lung cancer cells was used to detect the effect of BBM on tumor growth and metastasis in vivo. Both colony formation and EdU assays results revealed that BBM (10  μ M) significantly inhibited the proliferation of A549 cells ( P < 0.001). BBM (10  μ M) also significantly inhibited the migration and invasion ability of cancer cells in wound scratch and Transwell assays. Trypan blue assay and ELISA revealed that BBM (20  μ M) significantly induced cell death of A549 cells. In xenograft mouse models, the tumor volume was significantly smaller in mice treated with BBM (20 mg/kg). The western blotting assay showed that BBM inhibited the PI3K/Akt and MDM2-p53 signaling pathways, and BBM downregulated the expression of c-Maf. Our results show that BBM inhibits proliferation and metastasis and induces cell death of lung cancer cells in vitro and in vivo. These effects may be achieved by BBM reducing the expression of c-Maf and regulating the PI3K/Akt and MDM2-p53 pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom